
www.manaraa.com

Warm Fusion: Deriving Build-Catas from Recursive De�nitionsJohn Launchbury & Tim SheardOregon Graduate Institute of Science & TechnologyP.O. Box 91000, Portland, OR 97291-1000 USAfjl,sheardg@cse.ogi.eduAbstractProgram fusion is the process whereby separate pieces ofcode are fused into a single piece, typically transforming amulti-pass algorithm into a single pass. Recent work hasmade it clear that the process is especially successful ifthe loops or recursions are expressed using catamorphisms(e.g.foldr) and constructor-abstraction (e.g. build). Inthis paper we show how to transform recursive programsinto this form automatically, thus enabling the fusion trans-formation to be applied more easily than before.1 IntroductionThere are signi�cant advantages to multi-pass algorithms,in which intermediate data-structures are created and tra-versed. In particular, each of the passes may be relativelysimple, so are both easier to write and are potentially morereusable. By separating many distinct phases it becomespossible to focus on a single task, rather than attempting todo many things at the same time.The classic toy example of this is to compute the sum ofthe squares of the numbers from 1 to n. We might write it as,sum (map square [1 ::n]). There are two intermediate listshere. First the list of numbers [1::n], and second, the list ofsquares of those numbers. These lists serve the very usefulpurpose of acting as the \glue" which binds the componentsof the algorithm together. In this case the components areentirely standard, \o� the shelf" parts.Here's the rub, however. A direct implementation of thesum of squares would literally construct, traverse, and dis-card the intermediate lists, and so degrade execution timedreadfully compared with a function written to compute thesum of squares directly using, say, an accumulating param-eter.The problem is not simply one of lists. Compiler writerscommonly face the challenge of deciding how many passestheir compiler should perform. Exactly the same tradeo� ispresent. Increasing the number of passes means simpler,more modular and more maintainable code, whereas de-creasing the number of passes leads to greater run-time e�-ciency. In this case the intermediate structure is an abstract-syntax tree.

Another telling example is that of depth-�rst traversal ofgraphs. Many standard algorithms may be expressed verysuccinctly and simply as explicit manipulations of a graph'sdepth-�rst spanning forest, but in execution the literal pres-ence of the forest is ine�cient [KL95].The long-sought solution to this tension between modu-larity and reuse on the one hand, and e�ciency on the other,is to increase the transformation-power of compilers so thatthe programmer may feel liberated to write programs in acomponent style, con�dent that the compiler can fuse thecomponents together, removing the intermediate structures.In general, of course, we cannot expect that all intermediatestructures can be removed: data structures do serve a truecomputational role. We can hope, however, that \unnec-essary" intermediate structures will be removed wheneverpossible.In this paper, we show how to preprocess recursive func-tion de�nitions, turning them into a form particularly suitedto enabling component fusion.2 BackgroundDarlington and Burstall showed how fold-unfold transfor-mations could be used (with human help) to produce single-pass function de�nitions from the composition of two ormore other functions [DB76]. Turchin applied similar ideaswithin his supercompilation process [Tur86]. The supervising-compiler performed a symbolic execution of the program,building a residual program whenever computations couldnot be performed. Patterns in the nesting of recursive callsof functions were spotted and a single new recursive func-tion produced. While the process showed a high degree ofautomation, the method of generalisation used to controltermination was rather crude.Wadler also developed many of these same ideas in hislistless transformer [Wad84]. Multi-pass programs with in-termediate lists were converted into single loops in an im-perative language. Later, it became clear that the methodcould be expressed within the functional language itself, andhe further re�ned the idea, calling the method deforestation[Wad90], a pun which has stuck and is now commonly used.In order to be precise about which intermediate lists wereremoved, Wadler de�ned a treeless form for function de�ni-tions in which functions were guaranteed to have no inter-nal data structures. He then proved that compositions oftreeless functions, could be deforested into a single treelessfunction. A termination proof followed later [FW89].The original deforestation work was limited to �rst order.Attempts to extend it to higher order have met with limitedsuccess so far. In particular, it is often hard to �nd where

www.manaraa.com

to tie the recursive knot. Termination proofs also seem tobe rather hard.Recently, the fusion process has received impetus from adi�erent direction entirely. Rejecting the focus on arbitraryrecursive programs, the recent work has focussed on the fu-sion of catamorphisms (literally: down-formers), the list ver-sion variously known as fold in ML, reduce in early versionsof Miranda, and foldr in Haskell. Catamorphisms express\regular recursion" over data structures. Generalising thedatatype-speci�c work of Bird and Meerten's, Malcolm pop-ularised the promotion theorems from category theory whichdescribe how to fuse catamorphisms [Mal89].Much of this theory was turned into practice by Sheardand Fegaras [SF93]. Working with a language without gen-eral recursion but containing catamorphisms (and their gen-eralisation: homomorphisms), Sheard and Fegaras imple-mented a fusion algorithm based on the promotion theo-rems. However, a problem arises in practice. Without someuser-supplied guidance, the fusion engine attempts to fuseeverything, leading to combinatorial explosion.About the same time, Gill, Launchbury and Peyton Jonesexplored a one-step fusion algorithm which relied on func-tions being written in a highly-stylized form [GLPJ93]. Func-tions had to consume their arguments using the catamor-phism foldr and produce their list-results by �rst abstract-ing over cons and nil, and then using a new language con-struct called build. While it was unrealistic to expect pro-grammers to program this way, the list-processing functionsfrom the Haskell standard-prelude were reprogrammed inthis style. From then on, any combination of these stan-dard functions were automatically deforested including, forexample, the sum of squares example from the introduction.2.1 This PaperThis paper builds on these last two. We generalise Sheardand Fegaras' fusion algorithm to cope with explicit recur-sion, and use it to automatically derive the build/cata formfrom functions de�nitions written in the common recursivestyle. We can then use the one-step fusion law to achieveinter-function deforestation.The two steps of the process bear an interesting physicalanalogy. First we \ionise" function de�nitions to expose thenucleus|this is the build/cata form|and then the sepa-rate components of the program \plasma" are able to fuse ina single step, simply by bringing them into contact with oneanother. Experiments suggest that this is much more real-istic than attempting \cold fusion" on the original functionde�nitions.This two step approach addresses some of the shortcom-ing of previous methods.� It is not limited to lists, but works for a large class ofdata structures.� The scope of the fusion engine is limited to the body ofthe function. The fusion engine is not used for inter-function deforestation. This helps to control combina-torial explosion.� At no time in the process do we need to search forarbitrary patterns of recursive calls. The fusion enginesimply needs to spot a recursive call to the function itis currently processing.The cost of deriving build/cata form is amortised acrossfusions. We pay once to generate the form but may fuse itmany times with many other functions.

3 LanguageTo demonstrate our techniques, we use the language given inFigure 1. A program is a sequence of de�nitions. Functionde�nitions may be directly recursive (though, as presented,our techniques only work for direct recursion | i.e. no mu-tual recursion), but recursion in type de�nitions is speci�edusing an explicit recursion operator, Rec.For example, lists and binary trees may be de�ned asfollows. List = �� : Rec � :Nil () + Cons (�� �)Tree = �� : Rec � :Tip () +Node (� � �� �)Any well formed type constructor de�nition T = : : :Ci ti : : :with n constructors can be decomposed into a sequence ofn + 2 equations in which the recursion is opened out, andthe argument to each constructor is named. For example:List = �� : Rec � : EList � �EList = �� : �� :Nil (ENil � �) + Cons (ECons � �)ENil = �� : �� : ()ECons = �� : �� : �� �Type constructors correspond to functors (in the categoricalsense), so they have a natural action on functions as wellas on types. For example, the natural action of List on afunction is to map it down a list. In particular, the EC foreach constructor are also functors whose de�nitions we willneed later. The EC turn out to have a stylised form:EC ::= (��i :)� �� : twhere the � is the variable over which type recursion occurs.This is the only variable over which we need to parame-terise the function part of EC (the others are all instanti-ated to the identity function for our purposes). We de�neEC (g) = Eg[[t]] whereEg[[()]] = �() : ()Eg[[int]] = �x : xEg[[�i]] = �x : xEg[[�]] = gEg[[(t1 � : : :� tn)]]= �(x1; : : : ; xn) : (Eg[[t1]] x1; : : : ;Eg[[tn]] xn)Eg[[T t]] = �x : mapT (Eg[[t]]) xwheremapT is the usual functional component of the functorT . For example, we get the following functional behavioursfor ENil and ECons:ENil (g) = �() : ()ECons (g) = �(x; y) : (x; g y)We will often use the notation �x for the vector (x1; : : : ; xn),especially when the size depends on the context. In additionbecause of the isomophism (� ti)! t �= � (ti ! t) and thede�nition E(T) = � (EC(T)) we often express functionsout of a sum E(�) ! � as the product of functions outof each summand �(EC(�) ! �). Thus the product ofconstructors (Nil;Cons) has type EList(List �) ! List �,and the type of cata is: (EList(�) ! �) ! List � ! �.Also, for any type constructor T the constructors of T can bespeci�ed by Constrs(T). So, for example: Constrs(List) =(Nil;Cons) : EList(List �)! List �.

www.manaraa.com

e ::= v variablesj n constantsj (e1; : : : ; en) tuplesj e1 en applicationsj case e of C1�x1 -> e1 | : : : | Cn�xn -> en pattern matching casej �v : e lambda abstractionsj �(v1; : : : ; vn) : e abstractions over tuplesj cataT (e1; : : : ; e2) catamorphismsj buildT e buildsj C constructorsDecl ::= v = e (recursive) function de�nitionj T = (��i :)�Con type de�nitionCon ::= Rec � : C1 t1 + : : :+Cn tnt ::= () j t1 � : : :� tn j � j int j T t constructor argument typesFigure 1: Abstract SyntaxThe semantics of our language is that of a standard non-strict language with the addition of build and cata. Thesemantics of of these constructs obey the following equa-tions. cataT (f1; : : : ; fn) (Ci x)= fi (Ei (cataT (f1; : : : ; fn)) x) (1)buildT f = f(Constrs T) (2)cataT (f1; : : : ; fn) (buildT g) = g (f1; : : : ; fn) (3)where (f1; : : : ; fn) : �(Ei(�) ! �) (viewed as the typeE(�)! �).A catamorphism, cataT (f1; : : : ; fn), can be viewed asa function that replaces every constructor, Ci, in a datastructure with a corresponding function, fi. For example byrepeatedly applying equation 1:cataList(n; c) (Cons(7;Cons(3;Nil()))))= c (7;cataList(n; c) (Cons(3;Nil())))= c (7; c (3;cataList(n; c) (Nil())))= c (7; c (3; n))A buildT is applied to a function which abstracts overthe constructors of the datatype T . Thus:buildList(�(n; c) : c (7; c (3; n())))applies the function argument to the constructors of list,(Nil;Cons) (equation 2), and reconstructs the list:Cons(7;Cons(3;Nil()))A more detailed description of build can be found in Section6. We assume renaming is done whenever there is any dan-ger of name-capture, and for simplicity, we restrict ourselvesto singly-recursive datatypes and functions (i.e. no mutualrecursion), though we expect the algorithms to have a nat-ural extension to the more general case. More signi�cantly,we also restrict ourselves to ground data types, that is, datatypes which are not built using function space. Recent workby Hutton and Meijer may point the way to relaxing this re-striction [MH95]. In a practical context, if these data types

occur, then our algorithm simply makes no attempt to fusethem.Finally, while the build form is presented as a part ofthe language, our intent is that it be used for internal pur-poses only and not exposed to a programmer. Our methodfor introducing build into a term guarantees the validityof a the cata-build equation above|in general the rule isnot valid. If build was exposed to the programmer thena corresponding \cleanliness" check would be required: thetype-rule of Gill, Launchbury and Peyton Jones serves thispurpose, for example [GLPJ93].4 Two-stage FusionAs stated earlier, our fusion process proceeds in two sepa-rate phases. First individual function de�nitions are pre-processed in an attempt to re-express their de�nition interms of a build and a catamorphism. Second, separateinvocations of such functions are fused with one another us-ing the one-step fusion rule (equation 3) in which build'sand cata's cancel.In reality, there is some interplay between the phases.As the reverse example will show later, it is often worthtaking advantage of having already preprocessed functionsused within the body of the function being preprocessed.But in the life-cycle of any given function, the two phasesare distinct.In principle, preparing for the �rst phase is simplicityitself. Suppose we had a function foo = body : List int !List int, where body is a function-valued expression (usuallyof the form: �x : :::) calling foo recursively. We may rede�nefoo as follows:foo = �w : buildList(�(n; c) : cataList (n; c)(body (cataList (Nil;Cons) w)))There are two thing going on here. The �rst is that weapply a particular form of the identity function (namelycataList (Nil;Cons), also called the copy function) to body'sargument. Our purpose is to attempt to fuse body with thiscatamorphism. If successful, we will have managed to reex-press the recursion in body as a catamorphism.The second change to foo involves introducing buildList.The purpose of build is to enshroud a function which cor-

www.manaraa.com

responds to a data structure (here a list) except that it isabstracted over the constructors of the data type. The ab-straction is easily achieved using cata, since as describedearlier cata replaces every constructor in a data structurewith an associated function, Here the associated functionsare the variables abstracting the constructors. Again, ourgoal is to fuse this use of cata into body, replacing any ex-plicit \output constructors" with the parameters n and c.4.1 Rewrite rulesThe fusion algorithm can be expressed in terms of rewriterules, except that in order to fuse catamorphisms, we haveto allow the rule set to grow and shrink dynamically. Thebasic rewrite rules, called R0, are given in Figure 2. Thesyntax b[v 7! e] denotes the (capture-free) substitution of efor free occurences of v in b.The �nal rule performs one-step deforestation. As wenoted in Section 3, we need some mechanism to guaranteeits correctness. For our purposes, we guarantee correctnessby limiting build-introduction to introduce a correspondingcata as in the example above (more details are in Section 6).Then, assuming that all rewrites preserve equality, any ar-gument g to build must remain equal to a term of the form��c : cata �c e, for some e. ThuscataT �h (build g)= cataT �h (build(��c : cataT �c e))= cataT �h (cataT (Constrs(T)) e)= cataT �h e= (��c : cataT �c e) �h= g �hso demonstrating the validity of the cata-build law.It is often advantageous to extend the notation of arewrite rule flhs! rhsg to cover the case where both lhs andrhs are tuples. We introduce the notation) for this case.We de�ne f(x1; : : : ; xn)) (y1; : : : ; yn)g to mean the set ofrules extracted component-wise fx1 ! y1; : : : ; xn ! yng.We also extend the) notation by allowing E functorsover the tuples. Thus: fEC(g)(x1; : : : ; xn)) (y1; : : : ; yn)gis equivalent to the set of rules fz1 ! y1; : : : ; zn ! yngwhere zi is some term depending on xi, g, and EC, gainedby expanding out the de�nition of EC to give a vector ofrules. For examplefECons(g)(x1; x2)) (y1; y2)g= f(x1; g x2)) (y1; y2)g= fx1 ! y1; (g x2)! y2g4.2 Fusing CatamorphismsThe success of our technique depends critically on our abil-ity to fuse catamorphisms. The algorithm for this is basedon the promotion theorem, which describes when the com-position of a (strict) function g with a cata can be expressedas another cata [Mal89, MFR91].8C : g (fC(y1; : : : ; yn)) = hC(EC(g)(y1; : : : ; yn))g (cataT �f x) = cataT �h xInstantiating the theorem to lists gives:g (fNil()) = hNil()g (fCons(y1; y2)) = hCons(y1; g y2)g (cataList (fNil; fCons) x) = cataList (hNil; hCons) x

The following example is helpful in understanding whatthe promotion theorem is doing. If the x in the theorem istaken to be the list Cons(7;Cons(3;Nil())), then we have:g (cataList(fNil; fCons) (Cons(7;Cons(3;Nil()))))= g (fCons(7; fCons(3; fNil())))Applying the second hypothesis twice allows us to push gall the way to the end of the list, changing the fCons's tohCons's in the process.= g (fCons(7; fCons(3; fNil())))= hCons(7; g (fCons(3; fNil())))= hCons(7; hCons(3; g (fNil())))Now applying the �rst hypothesis removes g altogether:= hCons(7; hCons(3; g (fNil())))= hCons(7; hCons(3; hNil()))But this is justcataList(hNil; hCons) (Cons(7;Cons(3;Nil())))We intend to apply the promotion theorem as a left-to-rightrewrite rule. In order to do this we must �nd a set of func-tions hC which meet the conditions of the premise. In previ-ous work, Sheard and Fegaras described a fusion algorithmwhich either computed the hC, or terminated with failure[SF93]. The challenge in computing the hC is the presenceof the EC(g) term on the right-hand side of the premise (inthe general case). In the list instance of the theorem thismanifests itself as the g in the the call to hCons on the right-hand side of the second hypothesis. Without this term wewould have an immediate de�nition of the hC.The approach we take to generate the hC functions isto introduce additional free variables, �z, and to extend thecurrent set of rewrite rules with additional temporary ruleswhich describe how to eliminate combinations of the oldvariables (�y) with g, in favor of the new free variables. If,at the end of rewriting, all the old y's have been eliminatedthen we have successfully discovered a de�nition for hC, oth-erwise failure is reported. See Section 4.3 and Figure 3 fora detailed example. Note that the additional rules are validonly for the body of the hC function, and must be discardedonce the rewriting of the body of hC has terminated.To make this formal we introduce the following sequentnotation. We write R ` e �! e0 to mean that, usingrule-set R, the term e rewrites to e0 (in one step). Thenotation R ` e !�! e0 is its reexive, transitive closure.The complete rewrite system is given in Figure 3.The �rst rule simply applies existing rewrite rules in anycontext. The second rule is the most interesting. It performscata-fusion. If a term of the form g (cataT (f1; : : : ; fn) x)is encountered then for each constructor in the data typeT , an extended rewriting system is constructed and usedto attempt to produce the body of the functions hC. Notethat as far as the rewriting system is concerned, the vectorsof new variables have to be treated as literals, and not asterm-rewriting variables. We indicate this using bold font.Finally, if the result of any of these rewritings still containsany occurrence of the new free variables y, then the premiseof the rule fails, and cata-fusion is not performed.4.3 ExampleTo see these rules in action, consider fusing the sum func-tion with map when each are already expressed as cata-morphisms (we will deal with explicit recursion in the next

www.manaraa.com

R0 = f (�v : b) e ! b[v 7! e]; if v linear in b(�(v1; : : : ; vn) : b) (e1; : : : ; en) ! b[v1 7! e1; : : : ; vn 7! en]; if vi linear in eicase Ci �x of C1�v1 -> e1 | : : : | Cn�vn -> en ! ei[�vi 7! �x]; if vi linear in eicataT (f1; : : : ; fn) (Ci �x) ! fi (Ei (cataT (f1; : : : ; fn)) �x);cataT (f1; : : : ; fn) (buildT (g)) ! g (f1; : : : ; fn) gFigure 2: Basic Set of Rewrite RulesR[fl ! rg ` P [l] �! P [r]8C : R[fEC(g)�y) �zg ` ��z : g (fC �y) !�! hCR ` g (cataT �f x) �! cataT �h x yi 62 FV (�h)Figure 3: Rewrite Algorithmsection). Their de�nitions are:sum = cataList (�() : 0; (+))map f = cataList (Nil; �(x; w) : Cons(f x;w))Now, to enable rewiting these to a single catamorphism us-ing the ruleR0 ` sum � (map f) �! cataList (hNil; hCons)we have to successfully derive hNil and hCons using extendedrewrite systems. In the case of Nil we haveRNil = R0 [fENil(sum)()) ()g= R0 [f()) ()g= R0and for Cons we have,RCons= R0 [fECons(sum)(y1;y2)) (z1;z2)g= R0 [f(y1; sum y2)) (z1;z2)g= R0 [f(y1;cataList (�() : 0; (+)) y2)) (z1;z2)g= R0 [fy1 ! z1;cataList (�() : 0; (+)) y2 ! z2gRewriting the Nil case is immediate:RNil ` �() : cataList (�() : 0; (+)) (Nil ()) �! �() : 0In the Cons case it proceeds as follows:RCons` �(z1;z2) : cataList (�() : 0; (+))((�(x;w) : Cons(f x;w)) (y1;y2))�! �(z1;z2) : cataList (�() : 0; (+)) (Cons(f y1;y2))�! �(z1;z2) : (+) (f y1;cataList (�() : 0; (+)) y2)�! �(z1;z2) : (+) (f z1;z2)In both cases, the results have eliminated the y's, so rewrit-ing of the main term may proceed resulting in sum � (map f)equal to cataList (�() : 0; �(z1; z2) : f z1 + z2)

5 Expressing Recursive Functions as Catamorphisms.The cata-fusion fusion algorithm provides the mechanismfor computing the equivalent cata for a function. For aunary function, g : T ! �, �rst express the identity func-tion as a catamorphism over T , compose it with g on the left,and then apply the fusion algorithm. The identity functionat type T is easily expressed by using the constructors as ar-guments to the catamorphism operator: cataT (C1; : : : ;Cn).For non-unary recursive function, f , there are some ad-ditional di�culties. To which argument should the cata-morphism be applied? Which subexpression of f 's bodycorresponds to tying the knot of the recursive cycle? Wehave developed heuristics to address these di�culties whichseem to work well in a wide variety of cases.In essense, we collect the explicit arguments to a function(those given by literal outer lambdas), and then look for theoutermost case expression which we expect to be over oneof the explicit arguments. If the function is written in someother form then we give up. This may seem restrictive, butit successfully catches all de�nitions written using pattern-matching arguments.More formally, given a de�nition f = body, we expressthe structure of body in the formbody= �x1 : : : �xn : Q[case xk of pats]where Q is a non-case context de�ned by,Q ::= [] j �x : Q j Q Q0 j Q0 Qj (Q;Q0) j (Q0;Q) j build QQ0 ::= n j v j C j �x : Q0 j Q0 Q0j (Q0;Q0) j build Q0and where xk; f 62 FV (Q[]) and xk 62 FV (pats). The condi-tion that f does not occur in the free variables of the contextensures that any recursive call to f is `guarded' by the casestatement. The restriction on the xk rejects a case of fullprimitive recursion.If body does not have this structure we give up, otherwisewe generate a new function de�nition f# as follows:f = �x1::�xn : Q[f# xk �v]f# = �xk : ��v : case xk of patswhere �v = FV (pats)� FV (body)� fxkg.The function f is a \wrapper" and f# a \worker" in thesense of Peyton Jones and Launchbury [PJL91]. Wrapper

www.manaraa.com

functions are freely unfolded, so we substitute the new bodyof f in the de�nition of f#.We now have a recursive function with an outer case overthe �rst argument. We attempt to fuse this de�nition of f#with the copy function to obtain a catamorphic version off#. If successful, we may substitute (the now non-recursive)de�nition of f# back into the new de�ntion of f , so �nallyobtaining a de�nition of f as a catamorphism.To see this in practice, consider the example of map.map = �f : �x :case x ofNil() -> Nil()j Cons(z; zs) -> Cons(f z; map f zs)After breaking the de�nition into two components we have,map = �f : �x : map# x fmap# = �x : �f :case x ofNil() -> Nil()j Cons(z; zs) -> Cons(f z; map f zs)Then, by unfolding the new de�nition for map we obtain thefollowing recursive de�nition:map# = �x : �f :case x ofNil() -> Nil()j Cons(z; zs) -> Cons(f z; map# zs f)This function's body is a case expression over it's �rst argu-ment and is readily fused with cataList (Nil;Cons) to obtaina de�nition of the form:�x : �f : cataList (hNil; hCons) xNote that, by construction, the function map# is strict inits �rst argument (it is about to perform a case analysis)so the fusion theorem applies. To see the fusion in action,consider the rewite rules. Once again RNil = R0 and thistime RCons = R0 [fy1 ! z1;map# y2 ! z2g. Then hNiland hCons are computed by:RNil ` �() : map#(Nil ()) �! hNilRCons ` �(z1; z2) : map#(Cons(y1;y2)) �! hConsunder the condition that the y's are eliminated from theresulting terms.Note that our implementation actually substitutes thebody of map# in the above. This is the only place we useinformation about the de�nition of map# and this guaran-tees that it is unfolded exactly once.By applying the various rules we obtain:hNil = �() : �f : Nil()hCons = �(z1;z2) : �f : Cons(f z1; z2 f)Finally, substituting map# back into the de�nition of mapgives a new de�nition of map as a catamorphism.map = �f : �x : cataList (hNil; hCons) x f5.1 Static Parameters, Tuples and Irrelevant CasesThe astute reader will notice that the previous example isactually a higher-order catamorphism: each term is a func-tion waiting to be applied to f . While this generality is

sometimes essential, it is not useful in this case. The valueinherited by the recursive applications of cata are all f , theyare identical to each other.It is possible to make an improvement to the algorithmabove whereby static parameters are not inherited betweenthe recursive levels of a catamorphism. If we had done thisin the case of map we would have obtained the following:map = �f : �x :cataList (Nil; �(z1; z2) : Cons(f z1; z2)) xwhich is as good as it gets. The higher-orderness of theoriginal de�nition comes from passing f explicitly as an ar-gument to map#. If we reduce the arguments to the workerfunction (map# in this case) by omitting those argumentswhich are unchanged in the recursive calls, then in this andsimilar cases, the catamorphism becomes �rst order.Note, however, that the worker is not now a function init's own right, but should be viewed as a de�nition local tothe wrapper as it contains extra free variables. However,once the catamorphic de�nition is substituted back into thede�nition of the worker, the free variables are captured onceagain, and all is well.Another obvious extension is to allow each of the xi tobe tuples. In addition, we will see a couple of examples atthe end of the paper where we also pass over a case whenthe argument to the case is other than a variable.As with the static parameter optimisation, this addi-tional generality is useful but not critical. As it complicatesnotation we left it out of the algorithm de�nition. Con-versely, as none of these introduce any additional challengeswe will feel free to assume from now on that static parame-ters, tuples and irrelevant cases are handled sensibly.5.2 Linear ReverseThe linear version of the reverse function provides a goodexample of a changing recursive parameter, leading to anessential use of a higher-order catamorphism.lreverse= �x : �w :case x ofNil() -> wj Cons(z; zs) -> lreverse zs (Cons(z;w))The de�nition is already in the form constructed by the con-text machinery (i.e. lreverse# would be identical to lreverse),so we are ready to fuse lreverse to cataList (Nil;Cons). Asbefore, RNil = R0.RNil ` �() : lreverse(Nil ()) �! �() : �w : wso hNil = �() : �w : w.In the Cons case we haveRCons= R0 [fECons(lreverse)(y1;y2)) (z1;z2)g= R0 [f(y1;lreverse y2)) (z1; z2)g= R0 [fy1 ! z1;lreverse y2 ! z2gand the rewriting proceeds as followsRCons ` �(z1;z2) : lreverse(Cons(y1;y2))�! �(z1;z2) : �w : lreverse y2 (Cons(y1; w))�! �(z1;z2) : �w : z2 (Cons(z1; w))The y's have been eliminated from the resulting terms, sowe may rewriteR0 ` lreverse � cataList (Nil;Cons)�! cataList (�() : �w : w;�(z1;z2) : �w : z2 (Cons(z1; w)))

www.manaraa.com

So, �nally, we now de�ne,lreverse= cataList (�() : �w : w;�(z1;z2) : �w : z2 (Cons(z1; w)))6 Expressing Terms as BuildsThe purpose of build is to allow us to represent a term ofsome data type as a function parameterised over the outputconstructors. So, for example, rather than work with the lit-eral list: Cons(1;Cons(2;Cons(3;Nil()))) we work with thefunction �(n; c) : c (1; c (2; c (3; n()))). But now the ex-pression is no longer a list! It's a function. So (following[GLPJ93]) we introduce a construct for each data type Tcalled buildT de�ned by buildT g = g (Constrs(T)). Thus,reducing the termbuildList (�(n; c) : c (1; c (2; c (3; n()))))simply reconstructs the list Cons(1;Cons(2;Cons(3;Nil()))).Of course, the purpose of introducing build's is not sim-ply to reduce them away again! Rather the purpose is toenable the build to cancel with an enclosing catamorphism(as performed by the cata� build law), and so remove theneed to construct an intermediate structure.We introduce appropriate builds to an expression by ap-plying the syntax-to-syntax translation B de�ned as follows:B x = x [x is a variable]B (�x : e) = �x : B eB (e1; e2) = (B e1; B e2)or elseB e = buildT (��p : cataT �p e); if e : T t= e; otherwiseConsider the de�nition of a function such as append.append= �x : �y :case x ofNil() -> yj Cons(z; zs) -> Cons(z;append zs y)Applying B to it's body gives:append= �x : �y : buildList (�(n; c) : cataList (n; c)case x ofNil() -> yj Cons(z; zs) -> Cons(z;append zs y))Given that our aim is to remove unnecessary intermediatedata structures, then the build introduction strategy ap-pears to be a bad idea, as we generate new intermediatedata structures. However, these intermediates only existtemporarily|they will be fused with other components ofthe function de�nition.Typically, the newly introduced build and cata cometo rest immediately surrounding an existing case expres-sion (as in the append example above). There are then twodistinct ways to proceed:1. either we may distribute the new cata across the caseexpression, and then convert the whole term into asingle catamorphism using the techniques of Section 5;or2. we may turn the whole term into a catamorphism im-mediately, and only then fuse the outer catamorphismto the new one (this latter fusion is typically a higher-order fusion, described in Section 7).

The second of these sometimes fails (none of the fusion stepsgo through), but when it succeeds it seems to give better re-sults than the �rst. In constrast, the �rst seems the morerobust: on the examples we have tried it succeeds wheneverthe second does. On many common examples, both methodsare completely equivalent: they both succeed and produceexactly the same term. Such is the case with append. Ap-plying the algorithm gives the resultappend= �x : �y :buildList (�(n; c) : cataList (�() : cataList (n; c) y; c) x)which is equivalent to the version given in [GLPJ93].The di�erence between the two methods shows up inreverse, where the second method fails, and in its linearcounterpart lreverse, where the second is superior.6.1 Reverse exampleWe de�ne reverse as usual.reverse= �x :case x ofNil() -> Nil()j Cons(z; zs) -> append (reverse zs) (Cons(z;Nil()))Pushing the build in place gives:reverse= �x : buildList (�(n; c) : cataList (n; c)case x ofNil() -> Nil()j Cons(z; zs) -> append (reverse zs) (Cons(z;Nil())))Now, following the �rst strategy from Section 6, we dis-tribute the cata across the case. After some simple rewrit-ing we get the term:reverse= �x : buildList (�(n; c) :case x ofNil() -> n()j Cons(z; zs) -> cataList (n; c)(append (reverse zs) (Cons(z;Nil()))))To turn this into a single catamorphism we proceed as inSection 5. We express reverse as a wrapper and a worker:reverse = �x : buildList (�(n; c) : reverse# x (n; c))reverse# = �x : �(n; c) :case x ofNil() -> n()j Cons(z; zs) -> cataList (n; c)(append (reverse zs) (Cons(z;Nil())))and unfolding reverse in reverse# givesreverse# = �x : �(n; c) :case x ofNil() -> n()j Cons(z; zs) -> catajSublist (n; c)(append (buildList (reverse# zs)) (Cons(z;Nil())))Recall that the build-cata form of append is,append= �x : �y :buildList (�(n; c) : cataList (�() : cataList (n; c) y; c) x)

www.manaraa.com

8C : EC(�s : g � s) �s = EC(�r : r � k) �r) g � (fC �s) = (hC �r) � kg (cataT �f x w) = cataT �h x (k w) g strictFigure 4: The second order fusion theorem8C : R[fEC(�s : g � s) �s) EC(�r : r � g) �rg [fg y ! zg ` ��r : �z : g (fC �s y) !�! hCR ` g (cataT �f x w) �! cataT �h x (g w) si;y 62 FV (�h)Figure 5: Rewrite for 2nd order Cata-FusionSubstituting this, and performing two cata-build reduc-tions givesreverse# = �x : �(n; c) :case x ofNil() -> n()j Cons(z; zs) -> reverse# zs (c (z; n ()); c)Now we are in a position to turn this recursive de�nition intoa catamorphism. Assuming we optimise for static parame-ters (the c), we get the following higher-order catamorphism.reverse# = �x : �(n; c) :cataList (�() : �w : w; �(z1; z2) : �w : z2 (c (z1; w))) xThis can be substituted back into the de�nition of reverse,giving:reverse= �x : buildList (�(n; c) :cataList (�() : �w : w; �(z1; z2) : �w : z2 (c (z1; w))) x)Interestingly, the fusion we performed with appendhas turnedthe original quadratic de�nition of reverse into a linear ver-sion (if the build and the cata of the new de�nition ofreverse are expanded, then we obtain exactly the usual lin-ear version). The reason for this is that the worker reverse#was abstracted over the tail of its list (the n parameter)|anabstraction induced by the introduction of build.If we were to carry the same program through but start-ing with the linear version of reverse, then the result is notquite so good. We obtain the resultlreverse= �x : �w : buildList (�(n; c) :cataList (�() : �u : cataList (n; c) u;�(z1; z2) : �u : z2 (Cons(z1; u))) x w)where a true intermediate list is inherited and constructed,and only at the end it is abstracted over n and c.In order to avoid this, we need to adopt method 2 above,in which the cata is not distributed across the case, butis fused with the result of turning the inner term into acata. This second fusion is typically second-order, whichwe address now.7 Second-Order Cata-FusionA second order catamorphism, cataT �f x, is a catamorphismwhich traverses the structure x and constructs a function.Assuming we use the static parameter optimization, higher-order catamorphisms only arise when the recursive invoca-tions of the catamorphism really need an inherited attribute

from above. For example, iterative reverse works by passingthe reversed front of the list as an inherited attribute. Ateach level this is augmented, and at the end the accumulatedlist is returned.We need a fusion algorithm to handle such higher-ordercatamorphisms. Once again, the algorithm is derived from afundamental theorem found in Figure 4. The theorem maybe proved by an easy �xed-point induction.Consider an instantiation of this theorem in the case oflists. g � fNil() = hNil() � k� (s1; g � s2) = (r1; r2 � k))g (fCons(s1; s2) a) = hCons(r1; r2) (k a) �g (cataList (fNil; fCons) x w) =cataList (hNil; hCons) x (k w)Once again, we intend to interpret this law as a left-to-rightrewrite rule. This is given in Figure 5, with the di�erencethat the same function g is used both on the left and right(i.e. k is instantiated to g). This is less general than the the-orem allows, but seems to be su�cient for the cases we haveseen. The more general case poses the problem of generatingan appropriate k during rewriting.7.1 ExampleAs an example, consider fusing the function cataList (n; c)(where n and c are variables) to the iterative reverse functionwhen the latter is expressed as a second order catamorphism.This is exactly the sort of situation which must succeed formethod 2 of Section 6 to work.From Section 5 we hadlreverse = cataList (�() : �w : w;�(z1; z2) : �w : z2 (Cons(z1; w)))The fusion we want to perform iscataList (n; c) (lreverse x (Nil ()))We calculate the additional rules in each of the two cases.For Nil the additional rules arefENil(�s : cataList (n;c) � s) ()) ENil(�r : r � cataList (n;c))()g[fcataList (n;c) y ! zg= f()! ()g [fcataList (n;c) y! zg= fcataList (n;c) y ! zg

www.manaraa.com

and forConswe have (writing cataList (n;c) as g for brevity),fECons(�s : g � s) (s1; s2)) ECons(�r : r � g)(r1 ; r2)g[fg y! zg= f(s1; (�s : g � s) s2)) (r1; (�r : r � g) r2)g[fg y! zg= fs1 ! r1; g � s2 ! r2 � g; g y ! zg= fs1 ! r1; g (s2 x)! r2 (g x); g y ! zgSo the additional rules for Cons are:fs1 ! r1;cataList (n;c) (s2 x)! r2 (cataList (n;c) x);cataList (n;c) y ! zgPerforming the rewriting for hCons and hNil we obtain thefused version of cataList (n;c) (lreverse x (Nil())) as follows:RNil ` �() : �z : cataList (n;c) ((�() : �w : w) () y)�! �() : �z : cataList (n;c) y�! �() : �z : zand in the Cons case:RCons` �(r1; r2) : �z : cataList (n;c)((�(z1; z2) : �u : z2 (Cons(z1; u))) (s1; s2) y)�! �(r1; r2) : �z : cataList (n;c) (s2 (Cons(s1; y)))�! �(r1; r2) : �z : r2 (cataList (n;c) (Cons(s1;y)))�! �(r1; r2) : �z : r2 (c (s1;cataList (n;c) y)))�! �(r1; r2) : �z : r2 (c (s1;z)))�! �(r1; r2) : �z : r2 (c (r1;z)))so eliminating all s's and y. Putting this all in the contextof the build, we obtain,lreverse= �x : �w : buildList (�(n; c) :cataList (�() : �z : z; �(r1; r2) : �z : r2 (c (r1; z))) x w)which is equivalent to the result obtained from quadraticreverse!8 StatusThe algorithm we have described handles a wide varietyof cases|expressions which are consumers or producers ofstructured types, or both. Expressions which are producersof T objects are transformed into build's over T . Consumersof T objects are transformed into cata's over T . Functionswhich are producers of T objects and consumers of S objectsare transformed into build's over S surrounding a cata overT . When we have a function which is both a producer and aconsumer we �rst introduce a build into the recursion, andthen try to turn this recursive function into a cata. Of thetwo methods of Section 6 initially try the second, since whenit succeeds it seems to produce superior results. If the fu-sion algorithm fails using this strategy, we then attempt the�rst method (pushing the cata (n,c) across the case), andthen attempt to obtain a catamorphism. If neither workswe simply give up and leave the function as it was orignallyde�ned.8.1 More ExamplesThe upto function produces lists from integers.upto = �low : �high :case low > high ofFalse() -> Cons(low;upto (low+ 1) high)j True() -> Nil()

Since (in our setting) integers are not freely constructed,upto is only a producer and not a consumer, so we merelyobtain a build form:upto = �low : �high : build (upto# low high)upto# = �low : �high : �(n; c) :case low > high ofFalse() -> c (low;upto# (low+ 1) high (n; c))j True() -> n ()A function which both produces and consumes lists isthe zip function. It is interesting because it recurses overtwo arguments simultaneously:zip = �x : �y :case x ofNil() -> Nil()j Cons(a; b) -> case y ofNil() -> Nil()j Cons(c; d) -> Cons((a; c); zip b d)The resulting wrapper/worker pair, wraps a build overs listsaround a cata over lists.zip = �x : �y : buildList (zip# x y)zip# = �x : �y : �(n; c) :cataList (�() : �u : n ();�(w; g) : �u :case u ofNil() -> n()j Cons(z; zs) -> c ((w; z); g zs)) x yOnly zip's �rst argument is traversed using cata. The sec-ond is taken apart by explicit case-analysis. Thus, as in[GLPJ93, SF93], zip only fuses on it's �rst argument.The take function is interesting since it's Q context isnon-trivial, because of testing the integer argument in theoriginal recursive de�nition. Tying the recursive knot intake is complicated by the fact that this context needs to beduplicated inside the cata. For example:take = �m : �x :case m == 0 ofTrue() -> Nil()j False() -> case x ofNil() -> Nil()j Cons(a; b) -> Cons(a; take (m� 1) b)results in the following:take = �m : �x : buildList (�(n;c) :case m == 0 ofTrue() -> Nil()j False() ->cataList (�() : �m : n();�(z; g) : �m :c (z; case m� 1 == 0 ofTrue() -> n()j False() -> g (m� 1))) x mThe atten function which squashes trees into lists, il-lustrates the case where the producer and consumer are ofdi�erent types.atten = �t : case t ofTip() -> Nil()j Node(a; b; c) ->append (flatten a) (Cons(b; flatten c))

www.manaraa.com

It is interesting to note that, like the reverse function, theadditional abstraction introduced by build produces a linearatten function:atten = �t : build (atten# t)flatten# = �t : �(n; c) :cataTree (�() : �n0 : n0();�(f; x; g) : �n0 : �() : f (c (x;g n0))) t nOur �nal example is taken from a slightly richer type,intended to indicate how our algorithm is likely to performwhen applied to abstract syntax structures. Consider thetypesExp = Rec� :Num Int + Id String + Plus (�; �)Code = LoadI Int + LoadV String + Add()The �rst represents expressions, the second a post�x codeform. A typical translation function from the one to theother could be de�ned as follows.post�x = �x :case x ofNum n -> Cons(LoadI n;Nil())j Id s -> Cons(LoadV s;Nil())j Plus(x; y) -> append (postfix x)(append (postfix y) (Cons(Add();Nil())))Applying the transformation of the paper gives:post�x = �x : buildList(post�x# x)postfix# = �x : �(n; c) :cataExp (�m : �n0 : c (LoadI m;n0());�s : �n0 : c (LoadV s; n0());�(f; g) :�n0 : f (�() : g (�() : c (Add(); n0()))) x n8.2 What next?We have implemented the algorithm described here, but cur-rently only in the form of a toolbox of operations which areapplied to function de�nitions. A next step would be tocombine them in a single operation which takes a Haskellmodule, say, and rewrites many of the de�nitions in build-cata form. Doing this would provide more realistic experi-ence with our heuristics than at present.One notable shortcoming of our presentation is the infor-mal use of types, even though these are critical to decidingwhich form of build or cata to use. There would be signi�-cant bene�t in exploring our algorithm more formally withinan extended 2nd-Order polymorphic lambda calculus.9 AcknowledgmentsThe authors wish to acknowledge Leo Fegaras for a carefulreading of an earlier draft. The research reported in thispaper was supported by the USAF Air Materiel Command,contract # F19628-93-C-0069.References[DB76] J.Darlington and R.Burstall, A System whichAutomatically Improves Programs. Acta Infor-matica, 6(1), pp 41-60, 1976.[FW89] A.Ferguson and P.Wadler, When will deforesta-tion stop?. Proc. Glasgow workshop on Func-tional Programming, Rothesay, Scotland, Dept.of CS, Glasgow, 1989.

[GLPJ93] A.Gill, J.Launchbury, and S.Peyton Jones, AShort-cut to Deforestation. Proc. ACM FPCA93, Copenhagen, 1993.[KL95] D.King and J.Launchbury, Structuring DFS Al-gorithms in Haskell. Proc. ACM POPL 95, SanFrancisco, 1995.[Mal89] G.Malcolm. Homomorphisms and Promotabil-ity. In Mathematics of Program Construction,pp 335{347. Springer-Verlag, June 1989.[MFR91] E.Meijer, M.Fokkinga, and R.Paterson, Func-tional Programming with Bananas, Lenses, En-velopes and Barbed Wire. Proc. FPCA 91, LNCS523, S-V 1991.[MH95] E.Meijer and G.Hutton, Bananas in Space: Ex-tending Squiggol to Function-Space Types. Proc.FPCA 95,[PJL91] S.Peyton Jones and J.Launchbury, Unboxed Val-ues as First Class Citizens in a Non-strict Func-tional Language, Proc. FPCA 91, LNCS 523, S-V 1991.[SF93] T.Sheard and L.Fegaras, A Fold for All Seasons.Proc. ACM FPCA 93, Copenhagen, 1993.[SF93] T. Sheard, L. Fegaras and T. Zhou, ImprovingPrograms Which Induct Over Multiple InductiveStructures. ACM SIGPLAN workshop on Par-tial Evaluation and Semantic's Based ProgramManipulation, PEPM'94. Orlando Florida. June1994.[Tur86] V.Turchin, The Concept of a Supercompiler.ACM TOPLAS, 8, 3, pp 292-325, 1986.[Wad84] P.Wadler, Listlessness is better than laziness:lazy evaluation and garbage collection at compiletime. Proc. ACM L&FP, Austin, 1984.[Wad90] P.Wadler, Deforestation: Transforming Pro-grams to Eliminate Trees. TCS 73, pp 231-284,North Holland 1990.

