Warm Fusion: Deriving Build-Catas from Recursive Definitions

John Launchbury & Tim Sheard
Oregon Graduate Institute of Science & Technology
P.O. Box 91000, Portland, OR 97291-1000 USA
{j1,sheard}@cse.ogi.edu

Abstract

Program fusion is the process whereby separate pieces of
code are fused into a single piece, typically transforming a
multi-pass algorithm into a single pass. Recent work has
made it clear that the process is especially successful if
the loops or recursions are expressed using catamorphisms
(e.g.foldr) and constructor-abstraction (e.g. build). In
this paper we show how to transform recursive programs
into this form automatically, thus enabling the fusion trans-
formation to be applied more easily than before.

1 Introduction

There are significant advantages to multi-pass algorithms,
in which intermediate data-structures are created and tra-
versed. In particular, each of the passes may be relatively
simple, so are both easier to write and are potentially more
reusable. By separating many distinct phases it becomes
possible to focus on a single task, rather than attempting to
do many things at the same time.

The classic toy example of this is to compute the sum of
the squares of the numbers from 1 to n. We might write it as,
sum (map square [1..n]). There are two intermediate lists
here. First the list of numbers [1..r], and second, the list of
squares of those numbers. These lists serve the very useful
purpose of acting as the “glue” which binds the components
of the algorithm together. In this case the components are
entirely standard, “off the shelf” parts.

Here’s the rub, however. A direct implementation of the
sum of squares would literally construct, traverse, and dis-
card the intermediate lists, and so degrade execution time
dreadfully compared with a function written to compute the
sum of squares directly using, say, an accumulating param-
eter.

The problem is not simply one of lists. Compiler writers
commonly face the challenge of deciding how many passes
their compiler should perform. Exactly the same tradeoff is
present. Increasing the number of passes means simpler,
more modular and more maintainable code, whereas de-
creasing the number of passes leads to greater run-time effi-
ciency. In this case the intermediate structure is an abstract-
syntax tree.

Another telling example is that of depth-first traversal of
graphs. Many standard algorithms may be expressed very
succinctly and simply as explicit manipulations of a graph’s
depth-first spanning forest, but in execution the literal pres-
ence of the forest is inefficient [K1.95].

The long-sought solution to this tension between modu-
larity and reuse on the one hand, and efficiency on the other,
is to increase the transformation-power of compilers so that
the programmer may feel liberated to write programs in a
component, style, confident that the compiler can fuse the
components together, removing the intermediate structures.
In general, of course, we cannot expect that all intermediate
structures can be removed: data structures do serve a true
computational role. We can hope, however, that “unnec-
essary” intermediate structures will be removed whenever
possible.

In this paper, we show how to preprocess recursive func-
tion definitions, turning them into a form particularly suited
to enabling component fusion.

2 Background

Darlington and Burstall showed how fold-unfold transfor-
mations could be used (with human help) to produce single-
pass function definitions from the composition of two or
more other functions [DB76]. Turchin applied similar ideas
within his supercompilation process [Tur86]. The supervising-
compiler performed a symbolic execution of the program,
building a residual program whenever computations could
not be performed. Patterns in the nesting of recursive calls
of functions were spotted and a single new recursive func-
tion produced. While the process showed a high degree of
automation, the method of generalisation used to control
termination was rather crude.

Wadler also developed many of these same ideas in his
listless transformer [Wad84]. Multi-pass programs with in-
termediate lists were converted into single loops in an im-
perative language. Later, it became clear that the method
could be expressed within the functional language itself, and
he further refined the idea, calling the method deforestation
[Wad90], a pun which has stuck and is now commonly used.
In order to be precise about which intermediate lists were
removed, Wadler defined a treeless form for function defini-
tions in which functions were guaranteed to have no inter-
nal data structures. He then proved that compositions of
treeless functions, could be deforested into a single treeless
function. A termination proof followed later [FW89].

The original deforestation work was limited to first order.
Attempts to extend it to higher order have met with limited
success so far. In particular, it is often hard to find where

www.manaraa.com

to tie the recursive knot. Termination proofs also seem to
be rather hard.

Recently, the fusion process has received impetus from a
different direction entirely. Rejecting the focus on arbitrary
recursive programs, the recent work has focussed on the fu-
sion of catamorphisms (literally: down-formers), the list ver-
sion variously known as foldin ML, reduce in early versions
of Miranda, and foldr in Haskell. Catamorphisms express
“regular recursion” over data structures. Generalising the
datatype-specific work of Bird and Meerten’s, Malcolm pop-
ularised the promotion theorems from category theory which
describe how to fuse catamorphisms [Mal89].

Much of this theory was turned into practice by Sheard
and Fegaras [SF93]. Working with a language without gen-
eral recursion but containing catamorphisms (and their gen-
eralisation: homomorphisms), Sheard and Fegaras imple-
mented a fusion algorithm based on the promotion theo-
rems. However, a problem arises in practice. Without some
user-supplied guidance, the fusion engine attempts to fuse
everything, leading to combinatorial explosion.

About the same time, Gill, Launchbury and Peyton Jones
explored a one-step fusion algorithm which relied on func-
tions being written in a highly-stylized form [GLPJ93]. Func-
tions had to consume their arguments using the catamor-
phism foldr and produce their list-results by first abstract-
ing over cons and nil, and then using a new language con-
struct called build. While it was unrealistic to expect pro-
grammers to program this way, the list-processing functions
from the Haskell standard-prelude were reprogrammed in
this style. From then on, any combination of these stan-
dard functions were automatically deforested including, for
example, the sum of squares example from the introduction.

2.1 This Paper

This paper builds on these last two. We generalise Sheard
and Fegaras’ fusion algorithm to cope with explicit recur-
sion, and use it to automatically derive the build/cataform
from functions definitions written in the common recursive
style. We can then use the one-step fusion law to achieve
inter-function deforestation.

The two steps of the process bear an interesting physical
analogy. First we “ionise” function definitions to expose the
nucleus—this is the build/cata form—and then the sepa-
rate components of the program “plasma” are able to fuse in
a single step, simply by bringing them into contact with one
another. Experiments suggest that this is much more real-
istic than attempting “cold fusion” on the original function
definitions.

This two step approach addresses some of the shortcom-
ing of previous methods.

e [t is not limited to lists, but works for a large class of
data structures.

o The scope of the fusion engine is limited to the body of
the function. The fusion engine is not used for inter-
function deforestation. This helps to control combina-
torial explosion.

e At no time in the process do we need to search for
arbitrary patterns of recursive calls. The fusion engine
simply needs to spot a recursive call to the function it
is currently processing.

The cost of deriving build/cataform is amortised across
fusions. We pay once to generate the form but may fuse it
many times with many other functions.

3 Language

To demonstrate our techniques, we use the language given in
Figure 1. A program is a sequence of definitions. Function
definitions may be directly recursive (though, as presented,
our techniques only work for direct recursion — i.e. no mu-
tual recursion), but recursion in type definitions is specified
using an explicit recursion operator, Rec.

For example, lists and binary trees may be defined as
follows.

List = Aa.Recp.
Nil () + Cons (a X ﬁ)
Tree = Aa .Recf.

Tip () + Node (ﬁ X Xﬁ)

Any well formed type constructor definition T'=...C; ¢; ...
with n constructors can be decomposed into a sequence of
n + 2 equations in which the recursion is opened out, and
the argument to each constructor is named. For example:

List = Aa .Recf. Est o Jé]
EYst = Ao . AB.
Nil (ENil [ﬁ) + Cons (ECons [ﬁ)
Exi = Aa.AB.()
Feoons = Aa.AB.axp

Type constructors correspond to functors (in the categorical
sense), so they have a natural action on functions as well
as on types. For example, the natural action of List on a
function is to map it down a list. In particular, the E¢ for
each constructor are also functors whose definitions we will
need later. The F¢ turn out to have a stylised form:

Ec = (Aai.)" AB . ¢

where the 3 is the variable over which type recursion occurs.
This is the only variable over which we need to parame-
terise the function part of E¢ (the others are all instanti-
ated to the identity function for our purposes). We define
Ec (g) = & t] where

&ELO1 = A0-0

Elint] = dz.x
Elai] = M.z
gg[[ﬁ]] = g

Egl (1 x ... X tn)]

[
: = AMay,...,zn) . (&l Tz, ..., & tn] ©n)

Tt] = Xdv.map” (E[t]) =

where map7 is the usual functional component of the functor
T. For example, we get the following functional behaviours
for Eni and Fogons:

Enit (9) = A0 - ()
Econs (g) =)\(:n,y) . (1‘, g y)

We will often use the notation z for the vector (z1,...,zn),
especially when the size depends on the context. In addition
because of the isomophism (X ¢;) — ¢ =2 II (t; — ¢) and the
definition E(T) = X (Ec(T)) we often express functions
out of a sum E(a) — « as the product of functions out
of each summand II(Ec(a) — «). Thus the product of
constructors (Nil, Cons) has type ELISt(Lz'st a) — List a,
and the type of cata is: (ELISt(ﬁ) — B8) = List a = B.
Also, for any type constructor T' the constructors of T' can be
specified by Constrs(T). So, for example: Constrs(List) =

(Nil, Cons) : ELiSt(Lz'st a) — Lista.

www.manaraa.com

variables

e n= v
| n constants
| (e1,...,en) tuples
| e1en applications
| casee of C1Z1 ->e1 | ... | ChZyn > e, pattern matching case
| Av.e lambda abstractions
| A(vi,...,vn) . € abstractions over tuples
| cata®(er,...,es) catamorphisms
| build? e builds
| < constructors
Decl = wv=e (recursive) function definition
| T =(Aa;.) Con type definition
Con 1= Recf .Citl1+...4+Cntn
t n= ()| tix...xtp|almt| Tt constructor argument types

Figure 1: Abstract Syntax

The semantics of our language is that of a standard non-
strict language with the addition of build and cata. The
semantics of of these constructs obey the following equa-
tions.

cataT(fl7 ey fn) (G5 T)
= fi (Fi(cata”(fi,...,fn)) T) (1)

build” f = f(ConstrsT) (2)

cataT(fl,...,fn) (buildT 9) =9 (fi,..., fa) (3)
where (f1,...,fn) @ H(Ei(a) = a) (viewed as the type
E(a) = a).

A catamorphism, cata’(fi,..., fs), can be viewed as
a function that replaces every constructor, C;, in a data
structure with a corresponding function, f;. For example by
repeatedly applying equation 1:

cata®(n, c) (Cons(7, Cons(3,Nil()))))
¢ (7, cata ! (n, c) (Cons(3,Nil())))

¢ (7,¢ (3, cata™(n, ¢) (Nil())))

= ¢ (7,¢(3,n))

A build? is applied to a function which abstracts over
the constructors of the datatype T'. Thus:

build“* (A(n,c) . ¢ (7,¢ (3,n())))

applies the function argument to the constructors of list,
(Nil, Cons) (equation 2), and reconstructs the list:

Cons(77 Cons(37 Nil()))

A more detailed description of build can be found in Section
6.

We assume renaming is done whenever there is any dan-
ger of name-capture, and for simplicity, we restrict ourselves
to singly-recursive datatypes and functions (i.e. no mutual
recursion), though we expect the algorithms to have a nat-
ural extension to the more general case. More significantly,
we also restrict ourselves to ground data types, that is, data
types which are not built using function space. Recent work
by Hutton and Meijer may point the way to relaxing this re-
striction [MH95]. In a practical context, if these data types

occur, then our algorithm simply makes no attempt to fuse
them.

Finally, while the build form is presented as a part of
the language, our intent 1s that it be used for internal pur-
poses only and not exposed to a programmer. Our method
for introducing build into a term guarantees the validity
of a the cata-build equation above—in general the rule is
not valid. If build was exposed to the programmer then
a corresponding “cleanliness” check would be required: the
type-rule of Gill, Launchbury and Peyton Jones serves this
purpose, for example [GLPJ93].

4 Two-stage Fusion

As stated earlier, our fusion process proceeds in two sepa-
rate phases. First individual function definitions are pre-
processed in an attempt to re-express their definition in
terms of a build and a catamorphism. Second, separate
invocations of such functions are fused with one another us-
ing the one-step fusion rule (equation 3) in which build’s
and cata’s cancel.

In reality, there is some interplay between the phases.
As the reverse example will show later, it is often worth
taking advantage of having already preprocessed functions
used within the body of the function being preprocessed.
But in the life-cycle of any given function, the two phases
are distinct.

In principle, preparing for the first phase is simplicity
itself. Suppose we had a function foo = body : List int —
List int, where body is a function-valued expression (usually
of the form: Az) calling foo recursively. We may redefine
foo as follows:

foo = JAw .buildLiSt().\(n7). catalst (n,c)
(body (cataLISt (Nil, Cons) w)))

There are two thing going on here. The first is that we

(Nil, Cons), also called the copy function) to body’s
argument. Our purpose is to attempt to fuse body with this
catamorphism. If successful, we will have managed to reex-
press the recursion in body as a catamorphism.

The second change to foo involves introducing buildlst,
The purpose of build is to enshroud a function which cor-

www.manaraa.com

responds to a data structure (here a list) except that it is
abstracted over the constructors of the data type. The ab-
straction is easily achieved using cata, since as described
earlier cata replaces every constructor in a data structure
with an associated function, Here the associated functions
are the variables abstracting the constructors. Again, our
goal is to fuse this use of cata into body, replacing any ex-
plicit “output constructors” with the parameters n and c.

4.1 Rewrite rules

The fusion algorithm can be expressed in terms of rewrite
rules, except that in order to fuse catamorphisms, we have
to allow the rule set to grow and shrink dynamically. The
basic rewrite rules, called Ro, are given in Figure 2. The
syntax blv — €] denotes the (capture-free) substitution of e
for free occurences of v in b.

The final rule performs one-step deforestation. As we
noted in Section 3, we need some mechanism to guarantee
its correctness. For our purposes, we guarantee correctness
by limiting build-introduction to introduce a corresponding
cata as in the example above (more details are in Section 6).
Then, assuming that all rewrites preserve equality, any ar-
gument g to build must remain equal to a term of the form
AC . cata ¢ e, for some e. Thus

cata’ h (build g)
= cata’ h (build(Ac . cata’ & €))
= catal h (cataT (Constrs(T)) €)

= cataT he
= ()\f cata’ & e)h

so demonstrating the validity of the cata-build law.

It is often advantageous to extend the notation of a
rewrite rule {{hs — rhs} to cover the case where both lhs and
rhs are tuples. We introduce the notation = for this case.
We define {(z1,...,2n) = (y1,-..,yn)} to mean the set of
rules extracted component-wise {z1 — y1,...,Tn — Yn}.

We also extend the = notation by allowing £ functors
over the tuples. Thus: {Ec(g)(z1,...,2n) = (y1,-..,yn)}
is equivalent to the set of rules {z1 — y1,...,2n — yn}
where z; is some term depending on x;, g, and FE¢, gained
by expanding out the definition of F¢ to give a vector of
rules. For example

{Econs(9)(z1,52) = (y1,92)}
= {(z1,922) = (y1,92)}
= {z1 = y1, (g z2) = Y2}

4.2 Fusing Catamorphisms

The success of our technique depends critically on our abil-
ity to fuse catamorphisms. The algorithm for this is based
on the promotion theorem, which describes when the com-
position of a (strict) function g with a cata can be expressed
as another cata [Mal89, MFR91].

VC: g (fe(yi, - yn)) = hc(Ecl(g)(yi,-- -, yn))

g (cata® fu) = cata’ h o

Instantiating the theorem to lists gives:
g (fnu() = hni()
g (fCons(y17y2)) = hCons(ylvg y2)

g (CataLISt (fNilfoons) l‘) = CataLISt (hNilthons) X

The following example is helpful in understanding what
the promotion theorem is doing. If the z in the theorem is
taken to be the list Cons(7, Cons(3,Nil())), then we have:

g (cata™*(fnil, foons) (Cons(7, Cons(3, Nil()))))
= g (fCons(77 fCons(37 lel())))

Applying the second hypothesis twice allows us to push g
all the way to the end of the list, changing the fcong’s to
hcong’s In the process.

g (fCons(77 fCons(37 lel())))
= hCons(7vg (fCons(37fNi1())))
= hCons(77hCons(3vg (lel())))

Now applying the first hypothesis removes g altogether:

= hcons(7; hcons(3,9 (i)
= hCons(77hCons(37hNil()))

But this is just

cata® (hxil, hcons) (Cons(7, Cons(3, Ni1())))

We intend to apply the promotion theorem as a left-to-right
rewrite rule. In order to do this we must find a set of func-
tions he which meet the conditions of the premise. In previ-
ous work, Sheard and Fegaras described a fusion algorithm
which either computed the hc, or terminated with failure
[SF93]. The challenge in computing the k¢ is the presence
of the Ec(g) term on the right-hand side of the premise (in
the general case). In the list instance of the theorem this
manifests itself as the g in the the call to hcong on the right-
hand side of the second hypothesis. Without this term we
would have an immediate definition of the h¢.

The approach we take to generate the hc functions is
to introduce additional free variables, z, and to extend the
current set of rewrite rules with additional temporary rules
which describe how to eliminate combinations of the old
variables () with g, in favor of the new free variables. If,
at the end of rewriting, all the old y’s have been eliminated
then we have successfully discovered a definition for hg, oth-
erwise failure is reported. See Section 4.3 and Figure 3 for
a detailed example. Note that the additional rules are valid
only for the body of the h¢ function, and must be discarded
once the rewriting of the body of hc has terminated.

To make this formal we introduce the following sequent
notation. We write R F e — €’ to mean that, using
rule-set R, the term e rewrites to ¢’ (in one step). The
notation R F e —» ¢ is its reflexive, transitive closure.
The complete rewrite system is given in Figure 3.

The first rule simply applies existing rewrite rules in any
context. The second rule is the most interesting. It performs
cata-fusion. If a term of the form g(cata’(fi,..., fn) =)
is encountered then for each constructor in the data type
T, an extended rewriting system is constructed and used
to attempt to produce the body of the functions he. Note
that as far as the rewriting system is concerned, the vectors
of new variables have to be treated as literals, and not as
term-rewriting variables. We indicate this using bold font.
Finally, if the result of any of these rewritings still contains
any occurrence of the new free variables y, then the premise
of the rule fails, and cata-fusion is not performed.

4.3 Example

To see these rules in action, consider fusing the sum func-
tion with map when each are already expressed as cata-
morphisms (we will deal with explicit recursion in the next

www.manaraa.com

Ro = { (Av.b)e
Moy, ... vn) . b) (e1,...,6en)
case C; 7 of C101 ->er | ...
cata’ (fi,..., fa) (Ci F)
cata®(f1,..., fn) (build”(g))

| Cntn -> en

blv — €], if v linear in b

blvi = e1,...,un > ey], if v; linear in e;
ei[vi =], if v; linear in e;

fi (Fi (cata™(fi,..., fa))),

g(.f17"'7.fn) }

L1l 4d

Figure 2: Basic Set of Rewrite Rules

RU{l = r} F P[l] — P[]

VC: RU{Ec(9)y =2} F Mz.g (fc¥) —» hc

R F g (cata® fz) — cata” hw

yi € FV(h)

Figure 3: Rewrite Algorithm

section). Their definitions are:

cata*" (A(). 0, (+))
map f = catast (Nil, A(z, w) . Cons(f z,w))

sum

Now, to enable rewiting these to a single catamorphism us-
ing the rule

Ro F sumo (map f) — catal st (hNils hcons)

we have to successfully derive hyj and hcgong using extended
rewrite systems. In the case of Nil we have

Ril)0 = 0}

Ro U {Eni(sum
RoU{() = 0}

= 0

and for Cons we have,

RCons
= Ro U{Econs(sum)(yl,yg) (Z17Z2)}
Ro U{(yl,sum y2) (Z17Z2)

}
= RoU{(y1,cata (A0 -0, (+) ¥2) = (21,22)}
Ro U{y1 — 21, catal®! ()\() 0, (+)) y2 = 22}

Rewriting the Nil case is immediate:

Rt F AQ) - cata ™ (M) .0, (4)) (NiL ()) — A() . 0
In the Cons case it proceeds as follows:

R cons .
Foo Mz, 22) . cata™t (A(). 0, (+))
(M=, w) . Co.ns(f z,w)) (¥1,¥2))
— Az1,22) . cata™™" (A() . 0,(+)) (Cons(f y1,¥2))
— Mz1,2z2) . (+) (f y1,cata™" (M) . 0,(+)) ¥2)
— ANz1,22) . (+) (f 21,22)

In both cases, the results have eliminated the y’s, so rewrit-

ing of the main term may proceed resulting in sum o (map f)
equal to

cata (M) .0, Mz1,22) . f 214 22)

5 Expressing Recursive Functions as Catamorphisms.

The cata-fusion fusion algorithm provides the mechanism
for computing the equivalent cata for a function. For a
unary function, g : T' — «, first express the identity func-
tion as a catamorphism over 7', compose it with g on the left,
and then apply the fusion algorithm. The identity function
at type T 1s easily expressed by using the constructors as ar-
guments to the catamorphism operator: cataT(Cl7 ..., Cn).

For non-unary recursive function, f, there are some ad-
ditional difficulties. To which argument should the cata-
morphism be applied? Which subexpression of f’s body
corresponds to tying the knot of the recursive cycle? We
have developed heuristics to address these difficulties which
seem to work well in a wide variety of cases.

In essense, we collect the explicit arguments to a function
(those given by literal outer lambdas), and then look for the
outermost case expression which we expect to be over one
of the explicit arguments. If the function is written in some
other form then we give up. This may seem restrictive, but
it successfully catches all definitions written using pattern-
matching arguments.

More formally, given a definition f = body, we express
the structure of body in the form

body = Az1...Axy . Q[case xx of pats]

where 2 is a non-case context defined by,

Q:=1[11x.QlQQ QQ
[(Q,Q") 1 (Q",Q) | build Q

Qu=nlv|Cli.Q |Q Q
| (Q',Q") | build Q'

and where 2, f € FV(Q[]) and zx ¢ FV(pats). The condi-
tion that f does not occur in the free variables of the context
ensures that any recursive call to f is ‘guarded’ by the case
statement. The restriction on the zj rejects a case of full
primitive recursion.

If body does not have this structure we give up, otherwise
we generate a new function definition f# as follows:

f Aoy Az, . QIFF oy 0]
f# = Axk . AU.case xj of pats

where v = FV (pats) — FV (body) — {xx}.
The function f is a “wrapper” and f# a “worker” in the
sense of Peyton Jones and Launchbury [PJL91]. Wrapper

www.manaraa.com

functions are freely unfolded, so we substitute the new body
of f in the definition of f#.

We now have a recursive function with an outer case over
the first argument. We attempt to fuse this definition of f#
with the copy function to obtain a catamorphic version of
f#. If successful, we may substitute (the now non-recursive)
definition of f# back into the new defintion of f, so finally
obtaining a definition of f as a catamorphism.

To see this in practice, consider the example of map.

map = Af . Az .
case r of
Nil() -> Nil()
Cons(z,zs) => Cons(f z, map f zs)

After breaking the definition into two components we have,

map = Af . Az . map¥® x f
map® = Az . \f .
case r of
Nil() -> Nil()
Cons(z,zs) => Cons(f z, map f zs)

Then, by unfolding the new definition for map we obtain the
following recursive definition:

map® = Ax . Af .
case x of
Nil() -> Nil()
| Cons(z,2s) => Cons(f z, map* zs f)

This function’s body is a case expression over it’s first argu-
ment and is readily fused with cata™®! (Nil, Cons) to obtain

a definition of the form:
Az . Af . cata st (hNils hcons)

Note that, by construction, the function map® is strict in
its first argument (it is about to perform a case analysis)
so the fusion theorem applies. To see the fusion in action,
consider the rewite rules. Once again Rynjj = Ro and this
time Rcons = Ro U{y1 — 21, map® y2 — z2}. Then hyy
and hcgong are computed by:

Ryit B A() . map® (Nil ()) — hxil
RCons =)\(21722) . map#(Cons(yl,yQ)) — hCons

under the condition that the y’s are eliminated from the
resulting terms.

Note that our implementation actually substitutes the
body of map¥ in the above. This is the only place we use
information about the definition of map® and this guaran-
tees that it is unfolded exactly once.

By applying the various rules we obtain:

hnit = A - AS L Nil()
hcons =)\(Z17Z2) Af Cons(f Z1, Z2 f)

Finally, substituting map® back into the definition of map
gives a new definition of map as a catamorphism.

map = Af . Az . cataLiSt (hnil, haons) © f

5.1 Static Parameters, Tuples and Irrelevant Cases

The astute reader will notice that the previous example is
actually a higher-order catamorphism: each term is a func-
tion waiting to be appled to f. While this generality is

sometimes essential, it is not useful in this case. The value
inherited by the recursive applications of cata are all f, they
are identical to each other.

It is possible to make an improvement to the algorithm
above whereby static parameters are not inherited between
the recursive levels of a catamorphism. If we had done this
in the case of map we would have obtained the following:

map = Af . Az .
catalist (Nil, A(21, 22) . Conms(f 21, 22)) «

which is as good as it gets. The higher-orderness of the
original definition comes from passing f explicitly as an ar-
gument to map®. If we reduce the arguments to the worker
function (map# in this case) by omitting those arguments
which are unchanged in the recursive calls, then in this and
similar cases, the catamorphism becomes first order.

Note, however, that the worker is not now a function in
it’s own right, but should be viewed as a definition local to
the wrapper as it contains extra free variables. However,
once the catamorphic definition is substituted back into the
definition of the worker, the free variables are captured once
again, and all is well.

Another obvious extension is to allow each of the x; to
be tuples. In addition, we will see a couple of examples at
the end of the paper where we also pass over a case when
the argument to the case is other than a variable.

As with the static parameter optimisation, this addi-
tional generality is useful but not critical. As it complicates
notation we left it out of the algorithm definition. Con-
versely, as none of these introduce any additional challenges
we will feel free to assume from now on that static parame-
ters, tuples and irrelevant cases are handled sensibly.

5.2 Linear Reverse

The linear version of the reverse function provides a good
example of a changing recursive parameter, leading to an
essential use of a higher-order catamorphism.

lreverse = Az . Aw .
case v of
Nil() -> w
| Cons(z,zs) -> Ilreverse zs (Cons(z,w))

The definition is already in the form constructed by the con-
text machinery (i.e. Ireverse® would be identical to Ireverse),
so we are ready to fuse lreverse to cata ™t (Nil, Cons). As

before, Rni1 = Ro.
Rnit B A() . lreverse(Nil ()) — A() . Aw . w
so hnil = A() . Aw . w.

In the Cons case we have

RCons
= RoU{Econs(lreverse)(yi,y2) = (z1,22)}
= RoU{(y1,1lreversey2) = (z1,22)}
= RoU{y:1 — z1,1lreversey> — z2}

and the rewriting proceeds as follows

Rcons F A(z1,2z2) . lreverse(Cons(yi,y2))
— A(z1,22) . Aw . lreverse y, (Cons(y1, w))
—)\(Z17Z2) LAw L Zo (Cons(Z17 ’LU))

The y’s have been eliminated from the resulting terms, so
we may rewrite

RO - List (

lreverse o cata Nil, Cons)

catals? (A) - Aw . w,

— A(z1,22) . Aw . 22 (Cons(z1, w)))

www.manaraa.com

So, finally, we now define,

Ireverse = catals (A - Adw . w,
)\(Z17Z2) XTI (Cons(Z17 ’LU)))

6 Expressing Terms as Builds

The purpose of build is to allow us to represent a term of
some data type as a function parameterised over the output
constructors. So, for example, rather than work with the lit-
eral list: Cons(1, Cons(2, Cons(3,Nil()))) we work with the
function A(n,c) . ¢ (1, ¢ (2, ¢ (3,n()))). But now the ex-
pression is no longer a list! It’s a function. So (following
[GLPJ93]) we introduce a construct for each data type T'
called build” defined by build” g = g (Constrs(T)). Thus,
reducing the term

build”™ (A(n,c) . e (1, ¢ (2, ¢ (3,n()))))

simply reconstructs the list Cons(1, Cons(2, Cons(3, Nil()))).

Of course, the purpose of introducing build’s is not sim-
ply to reduce them away again! Rather the purpose is to
enable the build to cancel with an enclosing catamorphism
(as performed by the cata — build law), and so remove the
need to construct an intermediate structure.

We introduce appropriate builds to an expression by ap-
plying the syntax-to-syntax translation B defined as follows:

B =z = =z [z is a variable]
B(hr.e) = dz.Be
6(61,62) = (B €1, 662)
or else
Be = build"(A\p.cata® pe), ife:Tt
= e, otherwise

Consider the definition of a function such as append.

append= Az . Ay .
case r of
Nil() >y
| Cons(z,zs) -> Cons(z, append zs y)

Applying B to it’s body gives:

append = Az . Ay . build™®t (A(n,c) . cata ™t (n,c)
case x of
Nil() => y
| Cons(z,zs) -> Cons(z, append zs y))

Given that our aim is to remove unnecessary intermediate
data structures, then the build introduction strategy ap-
pears to be a bad idea, as we generate new intermediate
data structures. However, these intermediates only exist
temporarily—they will be fused with other components of
the function definition.

Typically, the newly introduced build and cata come
to rest immediately surrounding an existing case expres-
sion (as in the append example above). There are then two
distinct ways to proceed:

1. either we may distribute the new cata across the case
expression, and then convert the whole term into a
single catamorphism using the techniques of Section 5;
or

2. we may turn the whole term into a catamorphism im-
mediately, and only then fuse the outer catamorphism
to the new one (this latter fusion is typically a higher-
order fusion, described in Section 7).

The second of these sometimes fails (none of the fusion steps
go through), but when it succeeds it seems to give better re-
sults than the first. In constrast, the first seems the more
robust: on the examples we have tried it succeeds whenever
the second does. On many common examples, both methods
are completely equivalent: they both succeed and produce
exactly the same term. Such is the case with append. Ap-
plying the algorithm gives the result

append= Az . Ay . . .
build™st (A(n,c) . cata™®t (A0 - cata ™t (n,c) y,¢))

which is equivalent to the version given in [GLPJ93].

The difference between the two methods shows up in
reverse, where the second method fails, and in its linear
counterpart lreverse, where the second is superior.

6.1 Reverse example

We define reverse as usual.

reverse = Ax .
case v of
Nil() -> Nil()
| Cons(z,zs) -> append (reverse zs) (Cons(z, Nil()))

Pushing the build in place gives:

reverse = Av . build™s (A(n,c) . cata ™t (n,c)
case x of
Nil() -> Nil()
| Cons(z,zs) -> append (reverse zs) (Cons(z, Nil())))

Now, following the first strategy from Section 6, we dis-
tribute the cata across the cage. After some simple rewrit-
ing we get the term:

reverse = Av . build™s (A(n,c) .
case x of
Nil() -> n()
| Cons(z,zs) -> cata ™t (n,c)
(append (reverse zs) (Cons(z,Nil()))))

To turn this into a single catamorphism we proceed as in
Section 5. We express reverse as a wrapper and a worker:

reverse = Az . build™s (A(n, ¢) . reverse® = (n,c))
reverse® = Az . A\(n, ¢) .
case r of
Nil() -> n()
| Cons(z,zs) -> cata n,c)
(append (reverse zs) (Cons(z, Nil())))

List (

and unfolding reverse in reverse? gives

reverse® = Az . A(n,c) .
case x of
Nil() -> n()
| Cons(z,zs) -> catalubhest (n,c)
(append (buildLiSt (reverse® zs)) (Cons(z,Nil())))

Recall that the build-cata form of appendis,

append= Az . Ay . . .
build™st (A(n,c) . cata™®t (A0 - cata ™t (n,c) y, c) x)

www.manaraa.com

VC: Eg(As.gos)s=FEc(Ar.rok)r

> go(fcs) =(hg ok

g (cata® f o w) = cata® bz (k w)

g strict

Figure 4: The second order fusion theorem

VC: RU{Ec(As.gos)§= Ec(Ar.rog)t}U{gy =z} - Xf.) z.g(fc§y)—» hc

R + g (cata® fo w)— cata’ h =z (g w)

Figure 5: Rewrite for

Substituting this, and performing two cata-build reduc-
tions gives

reverse® = Az . A(n, ¢) .
case r of
Nil() -> n()
| Cons(z,2s) -> reverse® zs (c (z,n (), ¢)

Now we are in a position to turn this recursive definition into
a catamorphism. Assuming we optimise for static parame-
ters (the c), we get the following higher-order catamorphism.

reverse#. =Xz . A(n,c).
catalist (A - Aw . w, A(z1,22) . Aw . 22 (¢ (z1,w))) o

This can be substituted back into the definition of reverse,
giving:

reverse = A\ . buildst (A(n,c) .
catalst (A) - Adw . w, A(z1, 22) - Aw . 22 (¢ (z1,w))) z)

Interestingly, the fusion we performed with appendhas turned
the original quadratic definition of reverse into a linear ver-
sion (if the build and the cata of the new definition of
reverse are expanded, then we obtain exactly the usual lin-
ear version). The reason for this is that the worker reverse®
was abstracted over the tail of its list (the n parameter)—an
abstraction induced by the introduction of build.

If we were to carry the same program through but start-
tng with the linear version of reverse, then the result is not
quite so good. We obtain the result

Ireverse = Az . Aw .buildLi.St (A(n,c) .
cata ™t (AO) - A cata ™t (n,c) u,
A(z1,22) . Au . z2 (Cons(z1,u))) z w)

where a true intermediate list is inherited and constructed,
and only at the end it is abstracted over n and c.

In order to avoid this, we need to adopt method 2 above,
in which the cata is not distributed across the case, but
is fused with the result of turning the inner term into a
cata. This second fusion is typically second-order, which
we address now.

7 Second-Order Cata-Fusion

A second order catamorphism, cata’ f x, is a catamorphism
which traverses the structure x and constructs a function.
Assuming we use the static parameter optimization, higher-
order catamorphisms only arise when the recursive invoca-
tions of the catamorphism really need an inherited attribute

2nd

si,y € FV(R)

order Cata-Fusion

from above. For example, iterative reverse works by passing
the reversed front of the list as an inherited attribute. At
each level this is augmented, and at the end the accumulated
list is returned.

We need a fusion algorithm to handle such higher-order
catamorphisms. Once again, the algorithm is derived from a
fundamental theorem found in Figure 4. The theorem may
be proved by an easy fixed-point induction.

Consider an instantiation of this theorem in the case of
lists.

go fni() = hni() o k
((5179052)2(7“1,7"20]@) =)

g (fCons(51752) a) = hCons(“v”) (k a)

9 (cata"™ (fxil, foons) © w) =
catal st (hNily hcons) © (k w)

Once again, we intend to interpret this law as a left-to-right
rewrite rule. This is given in Figure 5, with the difference
that the same function g is used both on the left and right
(i.e. k is instantiated to g). This is less general than the the-
orem allows, but seems to be sufficient for the cases we have
seen. The more general case poses the problem of generating
an appropriate k during rewriting.

7.1 Example

As an example, consider fusing the function cata ™t (n,c)
(where n and ¢ are variables) to the iterative reverse function
when the latter is expressed as a second order catamorphism.
This is exactly the sort of situation which must succeed for
method 2 of Section 6 to work.

From Section 5 we had

lreverse = catal®’ A) - Aw . w,
A(z1,22) . Aw . 32 (Cons(z1, w)))

The fusion we want to perform is

cata®t (n,c) (Ireverse z (Nil ()))

We calculate the additional rules in each of the two cases.
For Nil the additional rules are

{Enil(As . cata™" (n,c)os)()
= Bxi(Ar . 1 o cata™®" (n,¢))()}
U {cata** (n,c)y =z}
{0 = (0} u{cata™ (n,c) y — 7z}
(n,c)y — 2z}

|
—_
a
o
153
o

www.manaraa.com

and for Cons we have (writing catal st (
{Econs(As . gos)(s1,82) = Econs(Ar . rog)(ri,r2)}
U{gy— 2z}
= {(s1,(As.gos)s2)=(r1,(Ar . rog)r2)}
U{gy — 2}
= {s1 —>rl, goss >r20g9, gy — 7}
= {si—=rl,g(s22)=r2(9x), gy =z}

n,c) as g for brevity),

So the additional rules for Cons are:
{s1 — rl,
cata™® (n,¢) (82 #) = 12 (cata

cata™® (n,¢) y — z}

List (H,C) CL‘),

Performing the rewriting for hgons and hnj) we obtain the
fused version of cata™st (n,c) (Ireverse z (Nil())) as follows:

A() - Az . cata™" (n,¢) (A() . dw . w) () ¥)

Rn F
— M) . Az . cata™® (n,¢)y

— A).Xz.z

and in the Cons case:

Rcons
Fo A(ri,r2) . Az . catal ™ (n,c)
((}\(21722) AU . 22 .(ConS(Zl, U)) (51752) y)

— A(ri,r2). Az . cata™" (n,c) (s2 (Cons(s1,y)))
— A(r1,r2) . Az .12 (cata™™ (n,c) (Cons(s1,y)))
— A(r1,1r2) . Az .12 (¢ (s1,cata™® (n,c) y)))
— Alri,r2) . Az . r2 (¢ (s1,2)))

— Alri,r2) . Az .12 (¢ (r1,2)))

so eliminating all 8’s and y. Putting this all in the context
of the build, we obtain,

Ireverse = Az . Aw . buildst (A(n,c) .
catalst (M) - Az .z, AMri,r2) - Az . r2 (¢ (r1, 2))) z w)

which 1s equivalent to the result obtained from quadratic
reverse!

8 Status

The algorithm we have described handles a wide variety
of cases—expressions which are consumers or producers of
structured types, or both. Expressions which are producers
of T' objects are transformed into build’sover T'. Consumers
of T' objects are transformed into cata’s over 7. Functions
which are producers of T' objects and consumers of S objects
are transformed into build’s over S surrounding a cata over
T.

When we have a function which is both a producer and a
consumer we first introduce a build into the recursion, and
then try to turn this recursive function into a cata. Of the
two methods of Section 6 initially try the second, since when
it succeeds it seems to produce superior results. If the fu-
sion algorithm fails using this strategy, we then attempt the
first method (pushing the cata (n,c) across the case), and
then attempt to obtain a catamorphism. If neither works
we simply give up and leave the function as it was orignally

defined.

8.1 More Examples
The upto function produces lists from integers.

upto = Mow . Ahigh .
case low > high of
False() —> Cons(low, upto (low + 1) high)
| True() -> Nil()

Since (in our setting) integers are not freely constructed,
upto is only a producer and not a consumer, so we merely
obtain a build form:

upto = Mow . Ahigh . build (upto® low high)
upto® = Mow . Mhigh . M\(n, c) .
case low > high of
False() => ¢ (low,upto® (low + 1) high (n,¢))
| Teuel) > 1 (

A function which both produces and consumes lists is
the zip function. It is interesting because it recurses over
two arguments simultaneously:

zip = Az . Ay .
case x of
Nil() -> Nil()
| Cons(a,b) -> casey of
Nil() -> Nil()
| Cons(c,d) -> Cons((a,c)7 zip b d)

The resulting wrapper/worker pair, wraps a build overs lists
around a cata over lists.

zip = Az . Ay . build™® (zip* x y)
zip¥ = Az . Ay . A(n,c) .
catalst (A) - Au.n (),
AMw,g) . Au .
case u of
Nil() -> n()
| Cons(z,2s)->c ((w,2), gzs))zy

Only zip’s first argument is traversed using cata. The sec-
ond is taken apart by explicit case-analysis. Thus, as in
[GL.PJ93, SF93], zip only fuses on it’s first argument.

The take function is interesting since it’s) context is
non-trivial, because of testing the integer argument in the
original recursive defimition. Tying the recursive knot in
take 1s complicated by the fact that this context needs to be
duplicated inside the cata. For example:

take = Am . Az .
case m == 0 of
True() —> Nil()
| False() -> case z of
Nil() -> Nil()
Cons(a7 b) -> Cons(a7 take (m — 1) b)

results in the following:

take = Am . Az . build"st (A(n,c) .

case m == 0 of
True() —> Nil()
| False() ->
cata™®t (M) - Adm . n(),
A(z,9) . Am
¢ (z, casem—1==0 of

’I‘rue() -> n()
| False() >g (m—1)))zm

The flatten function which squashes trees into lists, il-
lustrates the case where the producer and consumer are of
different types.

flatten = At . case t of
Tip() -> Nil()
| Node(cl7 b, C) ->
append (flatten a) (Cons(b, flatten c))

www.manaraa.com

It is interesting to note that, like the reverse function, the
additional abstraction introduced by build produces a linear
flatten function:

flatten = At . build (flatten® t)
flatten® = At . A(n, ¢) .
catal"e® (A0 . An’ . n'(),
Mfoz,g) . dn' A0 . fe(zygn)))tn

Our final example is taken from a slightly richer type,
intended to indicate how our algorithm is likely to perform
when applied to abstract syntax structures. Consider the

types

Exp = Recf.Num Int + 1d String + Plus (3, 0)
Code = Loadl Int 4+ LoadV String + Add()

The first represents expressions, the second a postfix code
form. A typical translation function from the one to the
other could be defined as follows.

postfic = Ax .
case x of
Num n -> Cons(LoadI n, Nil())
| 1a s -> Cons(LoadV s, Nil())
| Plus(z,y) -> append (postfiz z)
(append (postfiz y) (Cons(Aad(), Nil())))

Applying the transformation of the paper gives:

postfir = Az . buildst (postfir® x)
postfiz® = Az . A(n, c) .
cata™*P (Am . An’ . ¢ (Loadl m,n'()),
As . An' . ¢ (LoadV s,n'()),

Af,9) -
A’ f (A - g (A - e (aad(),n'()))) @ n

8.2 What next?

We have implemented the algorithm described here, but cur-
rently only in the form of a toolbox of operations which are
applied to function definitions. A next step would be to
combine them in a single operation which takes a Haskell
module, say, and rewrites many of the definitions in build-
cata form. Doing this would provide more realistic experi-
ence with our heuristics than at present.

One notable shortcoming of our presentation is the infor-
mal use of types, even though these are critical to deciding
which form of build or cata to use. There would be signifi-
cant benefit in exploring our algorithm more formally within
an extended 2nd-Order polymorphic lambda calculus.

9 Acknowledgments

The authors wish to acknowledge Leo Fegaras for a careful
reading of an earlier draft. The research reported in this
paper was supported by the USAF Air Materiel Command,
contract # F19628-93-C-0069.

References

[DB76] J Darlington and R.Burstall, A System which
Automatically Improves Programs. Acta Infor-

matica, 6(1), pp 41-60, 1976.
A.Ferguson and P.Wadler, When will deforesta-

tion stop?. Proc. Glasgow workshop on Func-
tional Programming, Rothesay, Scotland, Dept.
of C8, Glasgow, 1989.

[FWs9]

[GLPJ93]

[KL95]

[Mal89]

[MFRO1]

[MHO95]

[PJLO1]

[SF93]

[SF93]

[Turg6]

[Wad&4]

[Wadoo]

A.Gill, J.Launchbury, and S.Peyton Jones, A
Short-cut to Deforestation. Proc. ACM FPCA
93, Copenhagen, 1993.

D.King and J.Launchbury, Structuring DFS Al-
gorithms in Haskell. Proc. ACM POPL 95, San
Francisco, 1995.

G.Malcolm. Homomorphisms and Promotabil-
ity. In Mathematics of Program Construction,
pp 335-347. Springer-Verlag, June 1989.

E.Meijer, M.Fokkinga, and R.Paterson, Func-
tional Programming with Bananas, Lenses, Fn-
velopes and Barbed Wire. Proc. FPCA 91, LNCS
523, S-V 1991.

E.Meijer and G.Hutton, Bananas in Space: Ez-
tending Squiggol to Function-Space Types. Proc.
FPCA 95,

S.Peyton Jones and J.Launchbury, Unbozed Val-
ues as First Class Citizens in a Non-strict Func-
tional Language, Proc. FPCA 91, LNCS 523, S-
V 1991.

T.Sheard and L.Fegaras, A Fold for All Seasons.
Proc. ACM FPCA 93, Copenhagen, 1993.

T. Sheard, L. Fegaras and T. Zhou, Improving
Programs Which Induct Over Multiple Inductive
Structures. ACM SIGPLAN workshop on Par-
tial Evaluation and Semantic’s Based Program
Manipulation, PEPM’94. Orlando Florida. June
1994.

V.Turchin, The Concept of a Supercompiler.
ACM TOPLAS, 8, 3, pp 292-325, 1986.

P.Wadler, Listlessness is better than laziness:
lazy evaluation and garbage collection at compile

time. Proc. ACM L&FP, Austin, 1984.

P.Wadler, Deforestation: Transforming Pro-
grams to Eliminate Trees. TCS 73, pp 231-284,
North Holland 1990.

www.manaraa.com

